bitflag_attr/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
//! Generate types for C-style flags with ergonomic APIs using attribute macros and enums.
//!
//! # Getting started
//!
//! Add `bitflag_attr` to your `Cargo.toml`:
//!
//! ```sh
//! cargo add bitflag_attr
//! ```
//!
//! or
//!
//! ```toml
//! [dependencies]
//! bitflag-attr = "0.9.0"
//! ```
//!
//! ## Generating flags type
//!
//! Use the [`bitflag`] attribute macro to generate flag types:
//!
//! ```rust
//! use bitflag_attr::bitflag;
//!
//! #[bitflag(u32)]
//! #[derive(Clone, Copy)]
//! enum Flags {
//!     A = 0b00000001,
//!     B = 0b00000010,
//!     C = 0b00000100
//! }
//! ```
//!
//! Deriving [`Clone`] and [`Copy`] for the type is mandatory.
//!
//! The generated type is a **struct** wrapping the chosen primitive type.
//!
//! See the docs for the [`bitflag`] macro for the full syntax.
//!
//! Also see the [`example_generated`] module for an example of what the [`bitflag`] macro generates
//! for a flags type.
//!
//! ### Externally defined flags
//!
//! If you're generating flags types for an external source, such as a C API, you can use the
//! `non_exhaustive` attribute to communicate to the bitflags macro that there may be more valid
//! flags than the known flags.
//!
//! Without extra configuration, it defaults to `!0` (all bits set) as a mask of all bits the
//! external source may ever set, i.e. all bits are considered as possible values.
//!
//! ```rust
//! use bitflag_attr::bitflag;
//!
//! #[bitflag(u32)]
//! #[non_exhaustive] // All bits are considered as possible values.
//! #[derive(Debug, Clone, Copy)]
//! pub enum Flags {
//!     /// The value `A`, at bit position `0`.
//!     A = 0b00000001,
//!     /// The value `B`, at bit position `1`.
//!     B = 0b00000010,
//!     /// The value `C`, at bit position `2`.
//!     C = 0b00000100,
//!
//!     /// The combination of `A`, `B`, and `C`.
//!     ABC = A | B | C,
//! }
//! ```
//!
//! But you can also configure this value by using the helper attribute `extra_valid_bits` with a
//! desired value of valid bits that the external source may ever set.
//!
//! ```rust
//! use bitflag_attr::bitflag;
//!
//! #[bitflag(u32)]
//! #[non_exhaustive] // Communicate there is more potential valid flags than the known flags
//! #[extra_valid_bits = 0b001001111] // Specify the extra bits to take into consideration.
//! #[derive(Debug, Clone, Copy)]
//! pub enum Flags {
//!     /// The value `A`, at bit position `0`.
//!     A = 0b00000001,
//!     /// The value `B`, at bit position `1`.
//!     B = 0b00000010,
//!     /// The value `C`, at bit position `2`.
//!     C = 0b00000100,
//!
//!     /// The combination of `A`, `B`, and `C`.
//!     ABC = A | B | C,
//! }
//! ```
//!
//! Why should you do this? Generated methods like `all` and truncating operators like `!` only
//! consider bits in defined flags. Adding an unnamed flag makes those methods consider additional
//! bits, without generating additional constants for them. It helps compatibility when the external
//! source may start setting additional bits at any time. The
//! [known and unknown bits](#known-and-unknown-bits) section has more details on this behavior.
//!
//! ### Custom derives
//! You can derive some traits on generated flags types if you enable Cargo features. The following
//! libraries are currently supported:
//!
//! - `serde`: Support `#[derive(Serialize, Deserialize)]`, using text for human-readable formats,
//!     and a raw number for binary formats.
//! - `arbitrary`: Support `#[derive(Arbitrary)]`, only generating flags values with known bits.
//! - `bytemuck`: Support `#[derive(Pod, Zeroable)]`, for casting between flags values and their
//!     underlying bits values.
//!
//! ### Adding custom methods
//!
//! The [`bitflag`] macro supports any attributes on generated flags types within the macro itself,
//! while `impl` blocks can be added normally:
//!
//! ```rust
//! # use bitflag_attr::bitflag;
//! #
//! #[bitflag(u32)]
//! // Attributes can be applied to flags types
//! #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
//! enum Flags {
//!     A = 0b00000001,
//!     B = 0b00000010,
//!     C = 0b00000100
//! }
//!
//! // Impl blocks can be added to flags types normally
//! impl Flags {
//!     pub fn as_u64(&self) -> u64 {
//!         self.bits() as u64
//!     }
//! }
//! ```
//!
//! ## Working with flags values
//!
//! Use generated constants and standard bitwise operators to interact with flags values:
//!
//! ```rust
//! # use bitflag_attr::bitflag;
//! # #[bitflag(u32)]
//! # #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
//! # enum Flags {
//! #     A = 0b00000001,
//! #     B = 0b00000010,
//! #     C = 0b00000100
//! # }
//! #
//! // union
//! let ab = Flags::A | Flags::B;
//!
//! // intersection
//! let a = ab & Flags::A;
//!
//! // difference
//! let b = ab - Flags::A;
//!
//! // complement
//! let c = !ab;
//! ```
//!
//! See the docs for the [`example_generated`] module and the [`Flags`] trait for more details on
//! operators and how they behave.
//!
//! # Formatting and parsing
//!
//! `bitflags` defines a text format that can be used to convert any flags value to and from strings.
//!
//! See the [`parser`] module for more details.
//!
//! # Terminology
//!
//! This crate and its documentation tries to follow the same terminology of the `bitflags` crate
//! (the OG). Here we define some.
//!
//! ## Flags types, flags values, flags
//!
//! Some terminology to refer to things in the bitflags domain:
//!
//! - **Bits type**: A type that defines a fixed number of bits at specific locations.
//! - **Flag**: A set of bits in a bits type that may have a unique name.
//! - **Flags type**: A set of defined flags over a specific bits type.
//! - **Flags value**: An instance of a flags type using its specific bits value for storage.
//!
//! ```rust
//! # use bitflag_attr::bitflag;
//! #
//! #[bitflag(u8)]
//! //        -- Bits type
//! #[derive(Clone, Copy)]
//! enum FlagsType {
//! //   --------- Flags type
//!     A = 1
//! //  ----- Flag
//! }
//!
//! let flag = FlagsType::A;
//! //  ---- Flags value
//! ```
//!
//! ## Known and unknown bits
//!
//! Any bits in a flag you define are called _known bits_. Any other bits are _unknown bits_. In the
//! following flags type:
//!
//! ```rust
//! # use bitflag_attr::bitflag;
//! #[bitflag(u8)]
//! #[derive(Clone, Copy)]
//! enum Flags {
//!     A = 1,
//!     B = 1 << 1,
//!     C = 1 << 2,
//! }
//! ```
//!
//! The known bits are `0b0000_0111` and the unknown bits are `0b1111_1000`.
//!
//! `bitflag_attr` doesn't guarantee that a flags value will only ever have known bits set, but some
//! operators will unset any unknown bits they encounter.
//!
//! If you're using `bitflags` for flags types defined externally, such as from C, you probably want
//! all bits to be considered known, in case that external source changes. You can do this using an
//! unnamed flag, as described in [externally defined flags](#externally-defined-flags).
//!
//! ## Zero-bit flags
//!
//! Flags with no bits set, in general, should be avoided because they interact strangely with
//! [`contains`] and [`intersects`]. A zero-bit flag is always contained, but is never intersected. The
//! names of zero-bit flags can be parsed, but are never formatted.
//!
//! [`contains`]: Flags::contains
//! [`intersects`]: Flags::intersects
//!
//! ## Multi-bit flags
//!
//! Flags that set multiple bits should be avoided unless each bit is also in a single-bit flag.
//! Take the following flags type as an example:
//!
//! ```rust
//! # use bitflag_attr::bitflag;
//! #[bitflag(u8)]
//! #[derive(Clone, Copy)]
//! enum Flags {
//!     A = 1,
//!     B = 1 | (1 << 1),
//! }
//! ```
//!
//! The result of `Flags::A ^ Flags::B` is `0b0000_0010`, which doesn't correspond to either
//! `Flags::A` or `Flags::B` even though it's still a known bit.
//!
//! [`example_generated`]: crate::example_generated::ExampleFlags
#![no_std]

#[cfg(feature = "alloc")]
extern crate alloc;

#[cfg(any(test, feature = "std"))]
extern crate std;

use core::{
    fmt,
    ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not},
};

pub use bitflags_attr_macros::bitflag;

pub mod iter;
pub mod parser;

/// Primitive types that can be used with [`bitflag`] attribute implement this trait.
pub trait BitsPrimitive:
    private::Sealed
    + Copy
    + PartialEq
    + BitAnd<Output = Self>
    + BitOr<Output = Self>
    + BitXor<Output = Self>
    + Not<Output = Self>
    + BitAndAssign
    + BitOrAssign
    + BitXorAssign
    + fmt::Binary
    + fmt::LowerHex
    + fmt::UpperHex
    + fmt::Octal
    + Sized
    + 'static
{
    /// A value with all bits unset.
    const EMPTY: Self;

    /// A value with all bits set.
    const ALL: Self;
}

mod private {
    pub trait Sealed {}
}

macro_rules! impl_primitive {
    ($($ty:ty),+ $(,)?) => {
        $(
            impl $crate::private::Sealed for $ty {}
            impl $crate::BitsPrimitive for $ty {
                const EMPTY: Self = 0;
                const ALL: Self = !0;
            }
            impl $crate::parser::ParseHex for $ty {
                fn parse_hex(input: &str) -> Result<Self, $crate::parser::ParseError>
                where
                    Self: Sized
                {
                    <$ty>::from_str_radix(input, 16).map_err(|_| $crate::parser::ParseError::invalid_hex_flag(input))
                }
            }
        )+
    };
}

impl_primitive!(i8, i16, i32, i64, i128, isize);
impl_primitive!(u8, u16, u32, u64, u128, usize);

/// A set of defined flags using a bits type as storage.
///
/// ## Implementing `Flags`
///
/// This trait is implemented by the [`bitflag`] macro:
///
/// ```
/// use bitflag_attr::bitflag;
///
/// #[bitflag(u8)]
/// #[derive(Clone, Copy)]
/// enum MyFlags {
///   A = 1,
///   B = 1 << 1,
/// }
/// ```
///
/// It can also be implemented manually:
///
/// ```
/// use bitflag_attr::{Flags};
///
/// #[derive(Clone, Copy)]
/// struct MyFlags(u8);
///
/// impl Flags for MyFlags {
///     const KNOWN_FLAGS: &'static [(&'static str, Self)] = &[
///         ("A", MyFlags(1)),
///         ("B", MyFlags(1 << 1)),
///     ];
///
///     const EXTRA_VALID_BITS: Self::Bits = 1 | (1 << 1);
///
///     type Bits = u8;
///
///     fn from_bits_retain(bits: Self::Bits) -> Self {
///         MyFlags(bits)
///     }
///
///     fn bits(&self) -> Self::Bits {
///         self.0
///     }
/// }
/// ```
///
/// ## Using `Flags`
///
/// The `Flags` trait can be used generically to work with any flags types. In this example,
/// we can count the number of defined named flags:
///
/// ```
/// # use bitflag_attr::{bitflag, Flags};
/// fn defined_flags<F: Flags>() -> usize {
///     F::KNOWN_FLAGS.iter().count()
/// }
///
/// #[bitflag(u8)]
/// #[non_exhaustive]
/// #[derive(Clone, Copy)]
/// enum MyFlags {
///     A = 1,
///     B = 1 << 1,
///     C = 1 << 2,
/// }
///
/// assert_eq!(3, defined_flags::<MyFlags>());
/// ```
pub trait Flags: Sized + Copy + 'static {
    /// The set of named defined flags.
    const KNOWN_FLAGS: &'static [(&'static str, Self)];

    /// Extra possible bits values for the flags.
    ///
    /// Useful for externally defined flags
    const EXTRA_VALID_BITS: Self::Bits;

    /// The underlying bits type.
    type Bits: BitsPrimitive;

    /// Return the underlying bits of this bitflag.
    ///
    /// The returned value is exactly the bits set in this flags value.
    fn bits(&self) -> Self::Bits;

    /// Convert from `bits` value exactly.
    fn from_bits_retain(bits: Self::Bits) -> Self;

    /// Converts from a `bits` value. Returning [`None`] is any unknown bits are set.
    fn from_bits(bits: Self::Bits) -> Option<Self> {
        let truncated = Self::from_bits_truncate(bits);

        if truncated.bits() == bits {
            Some(truncated)
        } else {
            None
        }
    }

    /// Convert from `bits` value, unsetting any unknown bits.
    fn from_bits_truncate(bits: Self::Bits) -> Self {
        Self::from_bits_retain(bits & Self::all().bits())
    }

    /// Convert from a flag `name`.
    #[inline]
    fn from_flag_name(name: &str) -> Option<Self> {
        // Don't parse empty names as empty flags
        if name.is_empty() {
            return None;
        }

        Self::KNOWN_FLAGS
            .iter()
            .find(|(s, _)| *s == name)
            .map(|(_, v)| Self::from_bits_retain(v.bits()))
    }

    /// Get a flags value with the bits of a flag with the given name set.
    ///
    /// This method will return `None` if `name` is empty or doesn't
    /// correspond to any named flag.
    fn from_name(name: &str) -> Option<Self> {
        // Don't parse empty names as empty flags
        if name.is_empty() {
            return None;
        }

        for (flag_name, flag) in Self::KNOWN_FLAGS {
            if *flag_name == name {
                return Some(Self::from_bits_retain(flag.bits()));
            }
        }

        None
    }

    /// Construct a flag value with all bits unset.
    fn empty() -> Self {
        Self::from_bits_retain(Self::Bits::EMPTY)
    }

    /// Returns `true` if the flag value has all bits unset.
    fn is_empty(&self) -> bool {
        self.bits() == Self::Bits::EMPTY
    }

    /// Returns a flag value that contains all value.
    ///
    /// This will include bits that do not have any flags/meaning.
    /// Use [`all`](Flags::all) if you want only the specified flags set.
    fn all_bits() -> Self {
        Self::from_bits_retain(Self::Bits::ALL)
    }

    /// Returns `true` if the bitflag contains all value bits set.
    ///
    /// This will check for all bits.
    /// Use [`is_all`](Flags::is_all) if you want to check for all specified flags.
    fn is_all_bits(&self) -> bool {
        self.bits() == Self::Bits::ALL
    }

    /// Construct a flag value with all known flags set.
    ///
    /// This will only set the flags specified as associated constant.
    fn all() -> Self {
        let mut truncated = Self::Bits::EMPTY;

        for (_, flag) in Self::KNOWN_FLAGS.iter() {
            truncated |= flag.bits();
        }

        truncated |= Self::EXTRA_VALID_BITS;

        Self::from_bits_retain(truncated)
    }

    /// Whether all known bits in this flags value are set.
    fn is_all(&self) -> bool {
        // NOTE: We check against `Self::all` here, not `Self::Bits::ALL`
        // because the set of all flags may not use all bits
        Self::all().bits() | self.bits() == self.bits()
    }

    /// Returns `true` if there are any unknown bits set in the flag value.
    fn contains_unknown_bits(&self) -> bool {
        Self::all().bits() & self.bits() != self.bits()
    }

    /// Returns a bit flag that only has bits corresponding to the specified flags as associated constant.
    fn truncated(&self) -> Self {
        Self::from_bits_retain(self.bits() & Self::all().bits())
    }

    /// Returns `true` if this flag value intersects with any value in `other`.
    ///
    /// This is equivalent to `(self & other) != Self::empty()`
    fn intersects(&self, other: Self) -> bool
    where
        Self: Sized,
    {
        self.bits() & other.bits() != Self::Bits::EMPTY
    }

    /// Returns `true` if this flag value contains all values of `other`.
    ///
    /// This is equivalent to `(self & other) == other`
    fn contains(&self, other: Self) -> bool
    where
        Self: Sized,
    {
        self.bits() & other.bits() == other.bits()
    }

    /// Remove any unknown bits from the flags.
    fn truncate(&mut self)
    where
        Self: Sized,
    {
        *self = Self::from_bits_truncate(self.bits());
    }

    /// Returns the intersection from this value with `other`.
    #[must_use]
    fn intersection(self, other: Self) -> Self {
        Self::from_bits_retain(self.bits() & other.bits())
    }

    /// Returns the union from this value with `other`.
    #[must_use]
    fn union(self, other: Self) -> Self {
        Self::from_bits_retain(self.bits() | other.bits())
    }

    /// Returns the difference from this value with `other`.
    ///
    /// In other words, returns the intersection of this value with the negation of `other`.
    ///
    /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
    /// `difference` won't truncate `other`, but the `!` operator will.
    #[must_use]
    fn difference(self, other: Self) -> Self {
        Self::from_bits_retain(self.bits() & !other.bits())
    }

    /// TReturns the symmetric difference from this value with `other`..
    #[must_use]
    fn symmetric_difference(self, other: Self) -> Self {
        Self::from_bits_retain(self.bits() ^ other.bits())
    }

    /// Returns the complement of the value.
    ///
    /// This is very similar to the `not` operation, but truncates non used bits.
    #[must_use]
    fn complement(self) -> Self {
        Self::from_bits_truncate(!self.bits())
    }

    /// Set the flags in `other` in the value.
    fn set(&mut self, other: Self)
    where
        Self: Sized,
    {
        *self = Self::from_bits_retain(self.bits()).union(other);
    }

    /// /// Unset the flags bits in `other` in the value.
    ///
    /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
    /// `remove` won't truncate `other`, but the `!` operator will.
    fn unset(&mut self, other: Self)
    where
        Self: Sized,
    {
        *self = Self::from_bits_retain(self.bits()).difference(other);
    }

    /// Toggle the flags in `other` in the value.
    fn toggle(&mut self, other: Self)
    where
        Self: Sized,
    {
        *self = Self::from_bits_retain(self.bits()).symmetric_difference(other);
    }

    /// Yield a set of contained flags values.
    ///
    /// Each yielded flags value will correspond to a defined named flag. Any unknown bits
    /// will be yielded together as a final flags value.
    fn iter(&self) -> iter::Iter<Self> {
        iter::Iter::new(self)
    }

    /// Yield a set of contained named flags values.
    ///
    /// This method is like [`Flags::iter`], except only yields bits in contained named flags.
    /// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
    fn iter_names(&self) -> iter::IterNames<Self> {
        iter::IterNames::new(self)
    }
}

///////////////////////////////////////////////////////////////////////////////
// Adapted from bitflags `bitflags_match!`
///////////////////////////////////////////////////////////////////////////////

/// A macro that matches flags values, similar to Rust's `match` statement.
///
/// In a regular `match` statement, the syntax `Flag::A | Flag::B` is interpreted as an or-pattern,
/// instead of the bitwise-or of `Flag::A` and `Flag::B`. This can be surprising when combined with flags types
/// because `Flag::A | Flag::B` won't match the pattern `Flag::A | Flag::B`. This macro is an alternative to
/// `match` for flags values that doesn't have this issue.
///
/// # Syntax
///
/// ```ignore
/// bitflag_match!(expression, {
///     pattern1 => result1,
///     pattern2 => result2,
///     ..
///     _ => default_result,
/// })
/// ```
///
/// The final `_ => default_result` arm is required, otherwise the macro will fail to compile.
///
/// # Examples
///
/// ```rust
/// use bitflag_attr::{bitflag, bitflag_match};
///
/// #[bitflag(u8)]
/// #[derive(Clone, Copy, PartialEq)]
/// enum Flags {
///     A = 1 << 0,
///     B = 1 << 1,
///     C = 1 << 2,
/// }
///
/// let flags = Flags::A | Flags::B;
///
/// bitflag_match!(flags, {
///     Flags::A | Flags::B => println!("A and/or B are set"),
///     _ => println!("neither A nor B are set"),
/// })
/// ```
///
/// # How it works
///
/// The macro expands to a series of `if` statements, checking equality between the input expression
/// and each pattern. This allows for correct matching of bitflag combinations, which is not possible
/// with a regular match expression due to the way bitflags are implemented.
///
/// Patterns are evaluated in order.
#[macro_export]
macro_rules! bitflag_match {
    ($operation:expr, {
        $($t:tt)*
    }) => {
        // Expand to a closure so we can use `return`
        // This makes it possible to apply attributes to the "match arms"
        (|| {
            $crate::__bitflag_match!($operation, { $($t)* })
        })()
    };
}

/// Expand the `bitflags_match` macro
#[macro_export]
#[doc(hidden)]
macro_rules! __bitflag_match {
    // Eat an optional `,` following a block match arm
    ($operation:expr, { $pattern:expr => { $($body:tt)* } , $($t:tt)+ }) => {
        $crate::__bitflag_match!($operation, { $pattern => { $($body)* } $($t)+ })
    };
    // Expand a block match arm `A => { .. }`
    ($operation:expr, { $pattern:expr => { $($body:tt)* } $($t:tt)+ }) => {
        {
            if $operation == $pattern {
                return {
                    $($body)*
                };
            }

            $crate::__bitflag_match!($operation, { $($t)+ })
        }
    };
    // Expand an expression match arm `A => x,`
    ($operation:expr, { $pattern:expr => $body:expr , $($t:tt)+ }) => {
        {
            if $operation == $pattern {
                return $body;
            }

            $crate::__bitflag_match!($operation, { $($t)+ })
        }
    };
    // Expand the default case
    ($operation:expr, { _ => $default:expr $(,)? }) => {
        $default
    }
}

#[cfg(doc)]
pub mod example_generated;